Bookmark This Page! (Ctrl+D)
Subscribe to an RSS Feed of this Blog.
<< Home

071211: HK+MG real details shown at IEDM

Ed’s Threads 071211
Musings by Ed Korczynski on December 11, 2007

It’s time for IEDM, and ~1600 leaders of the CMOS fab world have gathered in Washington D.C. to announce the latest, greatest in new devices. The first big news concerns high-k/metal-gate (HK+MG) transistors for 45nm node and beyond processing. With many parallel sessions covering the most important technology trends in IC manufacturing, it is impossible to mention all of the great results presented by teams from around the world (apologies to: ST/NXP/Freescale, Fujitusu, MIRAI, NEC, SELETE, Sony, Toshiba, and TSMC).

Presenting on behalf of 53 co-authors, Intel VP Kaizad Mistry disclosed some real details of the company’s latest 45nm process technology featuring HK+MG. Finally answering the gate-first or gate last question with “both,” Intel has decided that the tough integration challenges for high performance logic can be best met with HK first but MG last processing. The transistors feature 1.0nm equivalent oxide thickness (EOT) dielectric, based on an atomic layer deposition (ALD) of a hafnium-based compound -- no additional details yet on other elements likely to be used in this ALD step, whether the phase of the final material is amorphous or crystalline, or what is the specific interface from the HK to the highly-strained channel. (In a side conversation after Mistry's talk, Intel Fellow Tahir Ghani confirmed the need for this interface, but would provide no details, only noting that it is critical for mobility.) pMOS performance is improved by increasing the Ge content of the embedded SiGe to 30% (from 23% @ 65nm, and 17% @ 90nm) and by reducing SiGe proximity to the channel. Lithography utilizes 193nm dry patterning, though some masks require two exposures in two resist layers along with a sacrificial hardmask. Transistors feature 35nm physical gate length, ultra-shallow junctions, and nickel silicide. Drive currents are benchmarked at 1.0V, a low 100nA/μm IOFF and at 160nm contacted gate pitch. pMOS drive current of 1.07 mA/μm (51% improvement over 65nm), while nMOS drive current is 1.36mA/μm (12% better than 65nm). SRAM arrays with cell sizes of 0.346μm2 and 0.383μm2 (performance dependent) and multiple microprocessors are already in volume production, with claimed excellent yields.

Figure. TEM micrograph of 45nm Intel high-k + metal gate pMOS transistor. (Source: IEDM2007 10.2)

Intel’s gate-first/last HK+MG process flow for 45nm transistors is as follows:
- STI, well, and VT implants,
- ALD (18-20Å) of HK gate dielectric,
- Polysilicon deposition and gate patterning,
- Source/drain extensions, spacer, Si recess and SiGe deposition,
- Source/drain anneal, Ni salicidation, ILD0 deposition,
- Poly opening CMP, poly removal,
- pMOS work-function metal deposition,
- Metal gate patterning, nMOS work-function metal deposition, and
- Metal gate Al fill and Al CMP, etch-stop layer deposition.

IMEC and its partners (TSMC, Matsushita, Infineon, Samsung, and NXP) showed a low VT CMOS gate-first HK+MG using TaC-based metals and laser-only annealing. Symmetric low VT values of ±0.25V and unstrained IDSAT of 1035/500μmA/μm (for nMOS/pMOS respectively) at IOFF=100nA/μm and VDD=1.1V were demonstrated on a single wafer. To do so required Hf-based high-k dielectric capping layers of lanthanum oxide (La2O3) for nMOS and aluminum oxide (Al2O3) for pMOS to lower EOT from ~17 to ~15 while maintaining the same target VT. HK-caps in combination with a laser-only activation anneal maintain band-edge equivalent work-function (EWF) and minimal EOT re-growth. La2O3 thickness control allows for VT turning from 0.2 to 0.6 for nMOS. HfSiO shows lower VT and higher mobilities compared to HfSiON. The laser-only anneal further results in improved LG scaling of 15nm and a 2Å TINV reduction over the spike reference. Lam etchers were used for gate patterning. IMEC has also been working on HK+MG for finFETs.

Prof. A. Toriumi et al. (U. of Tokyo, MIRAI-AIST, MIRAI-ASET) presented on “Materials Science-based device performance engineering for metal gate high-k CMOS.” EOT is based on k, which is based on the internal field and the polarizability of the material itself. HfO2 has monoclinic phase, but adding lanthanum, silicon, yttrium, and/or titanium can change the phase to cubic or tetragonal, while the k increases to ~30. Adding La2O3 increases the crystallization temperature up to 800-1000°C (over the range of 20%-40% incorporation), and the amorphous phase has the best overall properties. Regardless of composition, leakage current depends only on the physical thickness, which shows that the leakage mechanism is pure direct tunneling. Thus, using higher-k films with equal EOT (down to ~0.5nm) significantly reduces the leakage. Flat-band voltage shift has been clearly shown to be determined only by the dipoles formed at the bottom interface between SiO2 and HK, and not by the HK to MG interface. Scattering effects should be correlated to both the material itself and oxygen vacancies in the material.

Important information is being learned about nMOS/pMOS boundaries, according to H. Rusty Harris from SEMATECH, who gave an amazing presentation on a “Flexible, simplified CMOS using HK+MG on Si(110). “What we have shown is that if we add capping layers on top of the dielectric we do not see mobility degradation,” he said. Carrier mobilities depend upon crystallographic orientation, and changing from standard (100) to (110) orientation allows for mobility increase of 3X for holes, while electron mobility drop by ~1/2. Mixed orientation -- Si(100) for nMOS, and Si(11) for pMOS -- has been examined but process complexity, cost, and variability seem unattractive. Data for Si(110) planar CMOS is relatively similar to multiple orientation approach (with much lower manufacturing cost), though an pre-amorphosizing implant is used to minimize diffusion which is faster in (110) compared to (100) silicon. Even better results should be seen with finFETs, which inherently require orientation engineering. Using large 0.25μm planar transistor lengths (not short enough to fully realize the nMOS improvements), they showed that ring oscillators were nearly equivalent regardless of (110) or (100). Sub-threshold leakage is an important factor in LSTP optimization, and gate-induced drain lowering (GIDL) is the second biggest factor in off-state power. Without even optimizing the process flow for (110), using (110) lowered GIDL by an order of magnitude compared to (100).

CEA-LETI-MINATEC/Soitec use TiN metal over HfO2 HK gate dielectric to explore the limits of HK+MG with SOI substrates. From a historical perspective, Takagi et al. (IEDM '97) showed that long-channel transport conditions effectively degrade electron mobility as dielectric thickness decreases. Gate lengths from 18nm to 10μm were fabricated, all with widths of 10μm, EOT 1.7nm, and 145nm BOX thickness. They consider ballistic carriers may primarily determine the conduction in sSOI short-channel devices, and invoke a “ballisticity rate” to partly explain the influence of surface roughness scattering. Si thickness down to 2.5nm for SOI has been used for both HP (IOn=780&MU;MA/μm) and LP (IOFF=10pA/μm) devices.

Meanwhile, IBM and its partners missed out on getting a HK+MG paper into IEDM this year, and instead issued a press release about 32nm development. Having publicly committed to gate-first processing, Freescale researchers in the alliance have published a paper in the Journal of Applied Physics on the crystalline phases formed using zirconium along with hafnium-oxide. Hafnium zirconate (HfZrO4) alloy gate dielectric and hafnium dioxide (HfO2) films were formed by atomic layer deposition using metal halides and heavy water as precursors.


Labels: , , , , , , ,

posted by [email protected]
071211: HK+MG real details shown at IEDM

Post a Comment


Anonymous L. Chan said...

Hi Ed,

Great IEDM summary of the latest HK/MG development.

L. Chan

Wed Dec 12, 02:18:00 AM PST  

Post a Comment

<< Home

Ed's Threads is the weekly web-log of SST Sr. Technical Editor Ed Korczynski's musings on the topics of semiconductor manufacturing technology and business. Ed received a degree in materials science and engineering from MIT in 1984, and after process development and integration work in fabs, he held applications, marketing, and business development roles at OEMs. Ed won editorial awards from ASBPE, including interviews with Gordon Moore and Jim Morgan, and is not lacking for opinions.