Ed’s Threads 070129
Musings by Ed Korczynski on January 29, 2007
Intel wins race to be Intel
How did it happen? How could Intel
present 45nm transistor results with high-k dielectrics and dual metal gates (HK+MG) years ahead of everyone else? Mark Bohr, Intel senior fellow in logic technology development, stated, “I don’t believe any other company will have high-
k and metal gates until the 32nm node or later.” If this is true, it is only because IBM and other companies felt that they wouldn’t need HKMG for 45nm so they did not start manufacturing work two years ago. Thus, Intel has won a very difficult race as the single contestant.
It seems that the company even surprised itself with these results. On Thursday Jan. 25th, the day before the official announcement, Intel invited journalists to a last-minute show-and-tell at its Robert Noyce HQ building in Santa Clara, CA. PCs running on 45nm “Penryn” chips were shown—all of which came from the “first-silicon” wafer with these new materials processed using the first mask-set. Packaged first-silicon chips received at Intel’s Folsom test lab at 1:00 am had functioned, and the team immediately rushed one into a motherboard which promptly booted a software OS two hours later. Intel showed a photo of the team toasting their success with
Martinelli’s sparkling cider at 3:00 am—give Intel credit for maintaining entrepreneurial zeal with nearly 100,000 people.
Two core competencies were at work to get to these results: extreme discipline in manufacturing execution, and proprietary design and yield-learning methodologies. Since Intel has always had to live in the brutal merchant market, it has always aimed for the sweet spot in the middle of manufacturing-cost and chip-performance, and then relentlessly driven to meet its goals. Instead of silicon-on-insulator (SOI), Intel pushed traditional planar transistors on bulk silicon wafers to the limits of traditional materials for its current 65nm node manufacturing.
Looking at 45nm options about two years ago, Intel decided to stick with bulk silicon wafers and add HK+MG. In Jan 2006 it
announced yielding SRAM TEG chips with >1B transistors, but kept secret that these chips used HK+MG. Still secret is the hafnium-based dielectric composition, both of the metal gate materials, and whether the process flow is “gate-first” or “gate-last.” The new transistors still maintain strain in the channel regions for maximum carrier mobility.
Innovative design rules and advanced mask techniques will be used to extend the use of 193nm dry lithography, which we may assume includes orientation limitations in harmony with illumination sources. All these changes result in new process integration challenges and new yield-loss mechanisms, so we might expect it to take a while longer to ramp yield. Amazingly, Intel shows a 45nm yield-learning curve that tracks the last three nodes (
see figure, above).
CEO Paul Otellini—dressed all in black like an international jewel thief, perhaps due to having spent excessive time around
Steve Jobs—stated, “The plan is to have microprocessors in end-users hands by the end of 2007.”
Meanwhile, with timing that just could not be coincidence, on January 26th SEMATECH announced R&D; of a
gate-first HK+dualMG process. “Be aware of the difference between a real manufacturing commitment, and research papers that continue to fall short of these results,” stated Intel's Bohr. The very next day IBM/AMD/Sony/Toshiba said that
they will use HK+MG with their 45nm transistors sometime in 2008. We may assume that this announcement was rushed out in response to the Intel press release, since it erroneously refers to HK+MG as a single material—either the IBM alliance plans to use only one of the two, or IBM needs a technologist to review their press releases.
Technology development continues in the industry. Intel’s use of HK+MG materials in mainstream 45nm commercial manufacturing is certainly a significant milestone. Certainly other companies will follow, though in their own ways and in their own times. Due to the extreme complexities involved in any nanometer-era IC manufacturing, it’s getting more and more difficult to compare results from different companies. Fortunately, you can trust
SST and
WaferNEWS to sort the reality from the hype.
—
E.K.Labels: 45nm, high-k, HK+MG, IBM, Intel, metal gate, semiconductor
posted by
[email protected]
070129: Intel wins race to be Intel